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The relationship between the space-group symmetry of a close packing of equal

balls of repeat period P and the symmetry properties of its representing

Zhdanov symbol is analyzed. Proofs are straightforward when some symmetry is

assumed for the stacking, and it is investigated how this symmetry is reflected in

the structure of the Zhdanov symbol. Most of these proofs are documented in

the literature, with variable degrees of rigor. However, the proof is somewhat

more involved when working backwards, i.e. when some symmetry properties

for the Zhdanov symbol are assumed and the corresponding effect on the

symmetry of the polytype structure it represents is investigated, which may

explain why these proofs are avoided or shrugged off as ‘easily seen’, ‘obvious’

and the like.

1. Introduction

It is well known that any close-packed stacking of close-

packed layers of equal balls (referred to in what follows as

‘stacking’ or ‘polytype’) can be represented by a Zhdanov

symbol (Zhdanov, 1945, 1965), which consists of an even

number of positive1 integers, called ‘components’ in what

follows, n1n2n3 . . . n2k, such that
P

ni = P, the repeat period of

the stacking. The symbol represents n1 layers stacked . . . A!

B! C! A . . . , followed by n2 layers stacked . . . A! C!

B! A . . . and so on, when we move along, say, the positive

direction of the stacking axis. If we define n1 + n3 + n5 + . . . =

p and n2 + n4 + n6 + . . . = q, then for p� q � 0 ðmod 3Þ the

lattice of the stacking will be hexagonal, otherwise it will be

rhombohedral. The Zhdanov symbol uniquely represents the

structure but the reciprocal statement is not true: the same

structure can be represented by different Zhdanov symbols,

i.e. the mapping between structures and Zhdanov symbols is a

one-to-many mapping.

The relationship between the space-group symmetry of the

stacking and the symmetry properties of the Zhdanov symbol

was first established by Zhdanov (1945) in the form of a set of

rules. Zhdanov’s rules, as stated by Patterson & Kasper (1959),

Verma & Krishna (1966) and Zhdanov himself (1945, 1965)

appear to be necessary conditions: when a symmetry element

is present in the structure of the sphere stacking, then ‘it shows

up in the Zhdanov symbol’ (Patterson & Kasper, 1959) in a

way prescribed by Zhdanov’s rules. Apparently, it has been

largely taken for granted that they are also sufficient condi-

tions, i.e. the presence of a certain symmetry in the Zhdanov

symbol necessarily implies certain other symmetry elements in

the structure of the stacking thus represented.2 The symmetry

properties of the Zhdanov symbol are best understood when

one remembers that the symbol represents a unit of repetition,

and hence it is amenable to be represented graphically by

imposing cyclic boundary conditions, as sometimes employed

in other problems in geometrical crystallography (Patterson,

1944; Iglesias, 1981a,b). We use a cyclical representation of the

Zhdanov symbol (referred to in what follows as CRZS)

consisting of p black dots and q white dots equally spaced on a

circle, i.e. placed at the points resulting from dividing a circle

into p + q equal parts (see examples in Fig. 1). We have

established a mapping (see Table 1) between the space group

of the sphere stacking represented by a Zhdanov symbol and

the two-color point group of the CRZS, and assumed impli-

citly (Iglesias, 2006a) that the presence of certain symmetry

elements in the CRZS (that is, in the Zhdanov symbol)

necessarily implies certain other symmetry operations in the

stacking thus represented. Since the Zhdanov symbols and the

polytypes represented thereby are not in a one-to-one and

onto relation, and since no explicit proof of the reciprocal

Figure 1
(a) CRZS of Zhdanov symbol 522522, showing anti-twofold rotor,
TT-type mirror line and anti-mirror line. The point group is 20mm0 and
the space group of the stacking is P63=mmc, with inversion centers at
octahedral holes. (b) CRZS of Zhdanov symbol 6424, showing a BB-type
mirror line. The point group of the CRZS is m and the space group of the
stacking is P�33m1, with S-type inversion centers.

1 The only exception is the f.c.c. packing, whose Zhdanov symbol is 10.
2 Indeed, not even Zhdanov himself bothered to publish any proof of any of
his own rules, and apparently he considered it obvious that they worked both
ways, i.e. they were necessary and sufficient conditions.



symmetry relation between symbol and structure could be

found in the literature, we shall endeavor in what follows to

briefly prove this connection, and hence put our previous

results (Iglesias, 2006a,b) on a firm basis. For each one of the

rules contained in the old editions of International Tables for

X-ray Crystallography (Patterson & Kasper, 1959), we make a

direct translation into equivalent relations between the

symmetry of the polytype structure and the two-color planar

symmetry point group of the CRZS.

2. Proofs of Zhdanov rules

2.1. Rule �11ðSÞ�11ðSÞ

We reword Zhdanov’s rule in the following way: ‘A struc-

ture has a center of inversion at the center of a sphere (and

hence all spheres in its close-packed plane will contain centers

of inversion as well) if and only if the CRZS has a B-type

mirror line3 [i.e. a BB line or a BT line (Iglesias, 2006a)]’.

Proof

(a) Assume the structure has a center of inversion at the

center of the spheres of an A layer. The argument given by

Verma & Krishna (1966, p. 157) and the definition of a CRZS

having a B-type mirror line can be taken to constitute a proof

of this statement. It is to be noted that, after proving this, these

authors give examples whose truth would require the proof of

the converse implication, which they do not furnish.

(b) Assume the CRZS has a B-type mirror line (see Fig. 1b).

This mirror line incides on no dot in its B extremity4 on the

CRZS and, hence, the number of black dots on one side of the

line must equal the number of black dots on the other side,

and the same thing will happen with the white dots. We

remember that black and white dots represent respectively

any of the passages . . . A! B! C! A . . . and any of the

passages . . . A! C! B!A . . . and are equivalent to theþ

and � signs employed in the Hägg symbol (see, for instance,

Verma & Krishna, 1966, p. 85). We begin with the two dots (we

assume they are plus signs) closest to a B extremity of the B

mirror line (which can be either BB or BT type), and assume

there is in between, for instance, an A layer; we risk no loss of

generality by making these assumptions. Now we shall add

dots of the same color and successively consider what happens

for each value of the total number m of black (þ) dots, placed

symmetrically at each side, or n white (�) dots equally

arranged:

m ¼ n ¼ 1 . . . CþAþB . . . . . . B�A�C . . .

m ¼ n ¼ 2 . . . BþCþAþBþC . . . . . . C�B�A�C�B . . .

m ¼ n ¼ 3 . . . AþBþCþAþBþCþA . . . . . . A�C�B�A�C�B�A . . .

ð1Þ

From this we tentatively extract the following pattern:

When The sequence

m � 1 ðmod 3Þ

�n � 1 ðmod 3Þ

�
) begins with C and ends with B

m � 2 ðmod 3Þ

�n � 2 ðmod 3Þ

�
) begins with B and ends with C

m � 0 ðmod 3Þ

�n � 0 ðmod 3Þ

�
) begins with A and ends with A:

ð2Þ

We prove by induction that (2) holds for any m plus signs or

any n minus signs. We assume that the rule is satisfied by a

given sequence of k plus signs, and then increase k by one unit.

Then,

if k � 0 ðmod 3Þ then . . . A . . . A . . . goes to

. . . CþA . . . AþB . . . when k goes to k + 1;

if k � 1 ðmod 3Þ then . . . C . . . B . . . goes to

. . . BþC . . . BþC . . . when k goes to k + 1; and

if k � 2 ðmod 3Þ then . . . B . . . C . . . goes to

. . . AþB . . . CþA . . . when k goes to k + 1,

which means that the relations are also satisfied by k + 1 plus

signs. Since this is true for m = 1, 2, 3, then it will be true for

any m. In a similar way, we can prove that this holds for any n

minus signs.

In what follows, we say that two sign sequences whose

CRZS both have a B-type mirror line, as discussed above,

have the same character if their corresponding ABC

sequences start with the same letter, and likewise end with the

same letter (not necessarily the same as the previous one). We

next observe that adding one � sign to a sequence of þ signs

produces a sequence of the same character as that obtained by

taking out one þ sign; for instance, the sequence having three

plus signs followed by one minus sign, all mirrored around the

central A layer, has the same character as that having just two

plus signs (equally mirrored):

. . . B�AþBþCþAþBþCþA�C . . . . . . BþCþAþBþC . . .

and, by the same token, adding a new � sign to the last

sequence will produce a sequence of the same character as

that having just one plus sign; and hence a sequence of the

same character would have been obtained starting out with the

first sequence of three plus signs by adding two minus signs at

each end.
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Table 1
Relationship between the symmetry group of the cyclic representation of
the Zhdanov symbol, CRZS, and the space group of the stacking.

Two-color point group of CRZS Space group of the stacking

No symmetry P3m1, R3m
Mirror line only: point group m† P�33m1, R�33m
Anti-mirror line only: point group m0 P�66m2
Anti-twofold rotor only: point group 20 P63mc
All three above: point group 20mm0‡ P63=mmc

† When the mirror line is of the TT type/BB type/BT type, the inversion centers are at
octahedral holes (O)/spheres (S)/both (SO). ‡ The mirror line will be of the TT type/
BB type if the half-period of the stacking, P/2, is odd/even.

3 A B-type mirror line passes through the midpoint of the arc between dots at
both ends (BB type) or only at one end (BT type).
4 Not to be confused with a B layer.



It is easy to convince oneself that the order in which the plus

and minus signs are added is irrelevant, as far as sequence

character is concerned. Suppose that we are given a sequence

of m1 plus signs followed by n1 minus signs followed by m2 plus

signs followed by n2 minus signs and so on, such thatP
mi ¼ m,

P
ni ¼ n. After m1 + n1 signs, the sequence has

the same character as a sequence of m1 � n1 plus signs. We

now add m2 plus signs, obtaining a sequence with the same

character as one having m1 + m2 � n1 plus signs, and then add

n2 minus signs, so that we get a sequence with the same

character as one having m1 + m2 � n1 � n2 plus signs. It is

evident that when the process ends the only relevant par-

ameter is
P

mi �
P

nj ¼ m� n. Hence,

When The sequence

ðm� nÞ � 1 ðmod 3Þ ) begins with C and ends with B

ðm� nÞ � 2 ðmod 3Þ ) begins with B and ends with C

ðm� nÞ � 0 ðmod 3Þ ) begins with A and ends with A

9>=
>;
ð3Þ

is the general rule, which means that we can only get

sequences having these three different characters; and these

characters, satisfied by any sequence, define precisely the

presence of a center of inversion at the center of each sphere

in the initial A layer.

It can be seen that making B(C) the central layer would

result in the rule

When The sequence

ðm� nÞ � 1 ðmod 3Þ ) begins with AðBÞ and ends with CðAÞ

ðm� nÞ � 2 ðmod 3Þ ) begins with CðAÞ and ends with AðBÞ

ðm� nÞ � 0 ðmod 3Þ ) begins with BðCÞ and ends with BðCÞ:

9>=
>;
ð4Þ

This completes the proof.

It should be clear that the above proof depends only on the

properties of the B extremity of the mirror line, and hence is

valid for both BB- and BT-type mirror lines. It is valid even in

the limit of the CRZS becoming a straight line, i.e. in the case

where the sequence constructed around the central A layer is

finite or, being infinite, never becomes periodic.5 However, to

clarify how such a sequence may be placed on a CRZS, and

hence made periodic, we shall give a few examples.

We consider, for instance, the sequence

. . . AþB�A�CþA . . . and try to bend it to construct a valid

CRZS. One possible way is depicted in Fig. 2(a). Placing the

central A layer of the given sequence at the position marked

with an asterisk, we bend the sequence over itself, making

both extreme A layers become one and the same. The result is

Zhdanov symbol 22 (P = 4) representing a hexagonal stacking

belonging to space group P63=mmc, whose CRZS has a BB-

type mirror line [in addition to that, it shows a 20 anti-twofold

rotor and an anti-mirror line, not explicitly represented in Fig.

2(a)]. Its layer sequence is

. . .
��ACAB

��ACAB
��ACAB

��ACAB
�� . . .

" " " " " " " "

and it can be seen that all A layers contain S-type centers of

inversion (marked with arrows). Additionally, the B and C

layers contain mirror planes normal to the stacking direction

(see x2.4 below) and the 63 screw can be recognized (after one

reads through x2.5) to be incident on the balls of the A layers.

We can also bend the sequence and introduce an extra dot,

say black, to get Zhdanov symbol 23, P = 5, which gives the

CRZS depicted in Fig. 2(b), where it is plain that the mirror

line is of the BT type. Since 2� 3 � 2 6¼ 0 ðmod 3Þ, this

stacking is rhombohedral and belongs to space group R�33m. We

must realize that the ABC sequence of a rhombohedral

stacking will show periodicity along the normal to the layers

only if the dot sequence is trebled, and hence the layer

sequence of this stacking can be obtained by starting with an A

layer at the position marked with an asterisk in Fig. 2(b)

(emphasized below with a double arrow) and rotating clock-

wise three complete turns of the CRZS:

. . .BCAB
��ACABCBABCACBCAB

��ACABCBABCACBCAB
��ACAB . . .

# * # " # " # " # " # " # " #

where we have included 22
3 unit cells, marked by vertical bars.

We have flagged the S centers (layers 1, 6 and 11 in each unit

cell) with arrows pointing up, and the O centers, at interlayers

3–4, 8–9 and 13–14 in each cell (see x2.2) with arrows pointing

down. Notice that the given sequence ABACA appears

centered at the initial A layer of every unit cell; the sequences

BCBAB and CACBC are translationally equivalent through

the rhombohedral unit-cell translations. Notice also that every

run of five layers contains one layer with S centers and an

interlayer space with O centers: this information is accurately

displayed by the BT line in the CRZS depicted in Fig. 2(b).

If we take a sequence beginning with a C and ending with a

B of the kind we are dealing with in this section [see expres-

sion (1) above] and wrap it around a circle, we can obtain a

valid CRZS by inserting an extra þ sign between the extreme

B and the C, so the mirror line will be of the BT type; for such
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Figure 2
Two different CRZS both exhibiting the sequence . . . AþB�A�CþA . . .
We place the central A layer of the sequence at the position marked with
an asterisk and choose as positive the sense of rotation described by the
arrow. See x2.1(b) for details.

5 In that case, the stacking would belong to one of the 80 diperiodic groups
(Wood, 1964, p. 80) describing the symmetry properties of three-dimensional
objects periodic only in two dimensions. In particular, the group would be
P�332=m1, No. DG72 in Wood’s tabulation (Wood, 1964, p. 80).



a sequence [see equation (3)], we have m� n � 1 ðmod 3Þ and

hence the total balance of þ and � signs is

2ðm� nÞ þ 1 � 0 ðmod 3Þ, and we get a Zhdanov symbol

representing a hexagonal stacking. Similarly, a sequence

starting with a B and ending with a C will give us a CRZS

having a BT line if we introduce an extra� sign between the C

and the B; and since for this m� n � 2 ðmod 3Þ, it can be seen

that the sign balance is now 2ðm� nÞ � 1 � 0 ðmod 3Þ and,

hence, that we get a hexagonal stacking as well.

Rhombohedral stackings with BB lines in the CRZS can be

also obtained. Let, for instance, . . . C�BþCþAþBþC�B . . .,
for which m� n � 1 ðmod 3Þ [see equation (3)]. We construct

a CRZS having four black dots and two white dots (Zhdanov

symbol 42), and wrap the above sequence, placing the central

A layer at the center point of the run of four black dots; after

three turns around the circle, we get:

. . .CBC
��ABCBABCABACABCACBC

��ABC . . .

" " " " " " " "

where, again, the unit cell is marked by vertical bars and the S

centers are marked with arrows pointing up. The reader can

verify that only S centers are present here, consistent with the

CRZS having a BB line.

2.2. Rule �11ðOÞ�11ðOÞ

We rewrite this rule as: ‘The polytype structure (i.e. the

stacking) has a center of inversion at the center of an octa-

hedral hole (and hence all octahedral holes in its close-packed

plane will also contain centers of inversion) if and only if the

CRZS has a T-type mirror line (i.e. a TT-line or a BT line)’

(Iglesias, 2006a).6

Proof

(a) Assume the structure has a center of inversion at the

center of the octahedral holes defined by two successive layers.

Verma & Krishna (1966, p. 157) give an intuitive proof, which

can be translated into the above rule when combined with the

definition of a CRZS having a T-type mirror line (Iglesias,

2006a). Again, Verma & Krishna (1966, p. 157) use their

examples as though the reciprocal property had been proven.7

(b) Assume the CRZS has a T-type mirror line (see

example in Fig. 1a). Since such a line passes through a dot at its

T extremity in the CRZS, this dot is the central dot of an odd

run (an odd component of the Zhdanov symbol) of dots of the

same color. We assume it represents the passage A ! B (þ

sign), or B! A (� sign):

. . . AþB . . . . . . B�A . . .

. . . CþAþBþC . . . . . . C�B�A�C . . .

. . . BþCþAþBþCþA . . . . . . A�C�B�A�C�B . . .

and if the number of þ(�) signs in the central run is m(n),

necessarily odd, we can see that

When The sequence

m � 1 ðmod 3Þ

�n � 1 ðmod 3Þ

�
) begins with A and ends with B

m � 2 ðmod 3Þ

�n � 2 ðmod 3Þ

�
) begins with B and ends with A

m � 0 ðmod 3Þ

�n � 0 ðmod 3Þ

�
) begins with C and ends with C:

ð5Þ

The proof now follows the same lines as in the previous one,

finally obtaining that the manufacture of a sequence in

compliance with the T-type line of the CRZS produces ABC

sequences necessarily belonging to one of the following

characters:

When The sequence

ðm� nÞ � 1 ðmod 3Þ ) begins with A and ends with B

ðm� nÞ � 2 ðmod 3Þ ) begins with B and ends with A

ðm� nÞ � 0 ðmod 3Þ ) begins with C and ends with C

9>=
>;
ð6Þ

where, out of m and n, one should be odd and the other should

be even.

These relations specifically define the operation of a center

of symmetry placed in the octahedral hole between an A and a

B layer, which is frequently denoted as a � site because it is

located on the line perpendicular to the layers passing trough

the spheres of a C layer. (q.e.d.)

2.3. Rule �11ðSOÞ�11ðSOÞ

We translate this rule into our jargon as: ‘The structure has

an inversion center at the center of an octahedral hole (and

hence all octahedral holes in its close-packed plane will also

contain inversion centers), together with a center of inversion

at the center of a sphere (and hence all the spheres in its close-

packed layer will also have this kind of inversion center) if and

only if the CRZS has a BT-mirror line’.

Proof

Both direct and converse proofs are, obviously, combina-

tions of the proofs given above for �11ðSÞ and �11ðOÞ and we shall

omit the details, which can be easily reconstructed.

2.4. Rule for m parallel to the layers

We paraphrase this rule as: ‘The polytype structure has a

mirror plane parallel to the layers (which necessarily contains

the centers of all spheres in a layer) if and only if the CRZS

has an anti-mirror line (i.e. a two-color mirror line)’.

Proof

(a) Assume the structure has a mirror plane of this nature.

We refer to Verma & Krishna (1966, p. 158) for an intuitive

proof, which can be translated into the above rule when

combined with the definition of a CRZS having an anti-mirror

line (Iglesias, 2006a).

(b) We now assume the CRZS has an anti-mirror line (see

example in Fig. 1a) and prove that the sphere stacking thus
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6 A T-type mirror line passes through the central dot of an odd run of dots of
the same color at both ends (TT type) or only at one end (BT type).
7 In fact, in this as in the other proofs these authors give, the proof of the direct
statement is hopelessly entangled with that of the converse statement.



represented has necessarily a mirror plane contained in a

layer. Since such an anti-mirror line passes necessarily

between dots at both ends, the total number of black and

white dots (þ and� signs) must be equal. We assume the anti-

mirror line to represent sign symmetry around an A layer:

. . . B�AþB . . . . . . CþA�C . . .

. . . C�B�AþBþC . . . . . . BþCþA�C�B . . .

. . . A�C�B�AþBþCþA . . . . . . AþBþCþA�C�B�A . . .

Obviously the pattern now is

When The sequence

m � 1 ðmod 3Þ

�n � 1 ðmod 3Þ

�
) begins with B and ends with B

m � 2 ðmod 3Þ

�n � 2 ðmod 3Þ

�
) begins with C and ends with C

m � 0 ðmod 3Þ

�n � 0 ðmod 3Þ

�
) begins with A and ends with A;

ð7Þ

where m (n) designates the number ofþ (�) signs at the right-

hand side of the central A layer. We can prove, in analogy with

the cases proved above, that the character of the sequences to

be obtained when adding layers in accordance with the anti-

mirror line is limited to

When The sequence

ðm� nÞ � 1 ðmod 3Þ ) begins with B and ends with B

ðm� nÞ � 2 ðmod 3Þ ) begins with C and ends with C

ðm� nÞ � 0 ðmod 3Þ ) begins with A and ends with A

9>=
>;
ð8Þ

which happens to be exactly what a mirror plane contained in

an A layer (or, for that matter, any kind of layer) will produce.

2.5. Rule for 63 screw normal to the layers

Since the group of symmetry operations represented by a 63

screw contains the operations of a threefold axis of rotation as

a subgroup, the location of a 63 screw normal to the layers of a

close packing is restricted to the (possible) sphere positions

for A, B and C kinds of layers (see, for instance, Figs. 18 and 20

in Verma & Krishna, 1966) because these are the places where

the threefold axes are located (we remember that a sphere

packing has minimum symmetry P3m1 or R3m). Every poly-

type, except h.c.p. (Zhdanov symbol 11) will have spheres at

all three possible positions, hence the 63 screws will always

contain some spheres. In h.c.p., the screw does not intercept

any sphere, as it goes through the sphere positions of the

unoccupied C-type layer (Verma & Krishna, 1966, p. 159). It is

easy to see that a 63 screw passing through the spheres of a

given layer type will generate another layer of the same type

displaced by 1/2 along the screw (c) axis and layers of a

different type will have symmetry-related mates, also

displaced by 1/2, and having the type label exchanged. For

instance, if the screw intercepts the spheres of an A layer,

every layer in the unit cell will have a mate, generated by the

screw axis, displaced by 1/2 along the c axis: those corre-

sponding to A layers will also be A layers, those corresponding

to B layers will be C layers, and those corresponding to C

layers will be B layers.

We recast the corresponding Zhdanov rule as: ‘The poly-

type structure has a 63 screw axis normal to the layers if and

only if the CRZS has an anti-twofold axis of rotation, i.e. a

two-color twofold rotor’. (See Fig. 1a for an example.)

Proof

(a) Assume the structure possesses such a screw axis. It is

obvious, from the above discussion, that the second half of the

unit cell along the c axis is entirely determined by the contents

of the first half. We can suppose, with no loss of generality, that

the screw is incident on the spheres of an A layer. We take the

origin of the unit cell in this layer, so both the first and second

halves start with an A layer. If the second layer of the first half

is a B layer, the corresponding one in the second half will be a

C layer, and reciprocally: it is clear that whatever sign, plus or

minus, the first half starts with, the second one will start with

the opposite sign:��AþB� . . .
��A�C . . .

����A�C . . .
��AþB . . .

��; ð9Þ

where vertical bars are employed to mark the beginning of the

two halves of the unit cell.

Suppose now that we start with A+B and we add another

layer; there are two possibilities:

jAþB�A . . . jA�CþA . . . j

jAþBþC . . . jA�C�B . . . j:
ð10Þ

It should be obvious by now that the sequence of signs we get

in the second half of the unit cell is the negative of the

sequence in the first half. This requires clearly that the total

number of þ and � runs in each half must be odd, since there

must be a change of sign at the boundary between the two

halves. Hence the corresponding Zhdanov rule: If the struc-

ture has a 63 screw, the Zhdanov symbol will consist of two

equal halves, each containing an odd number of components.

This immediately translates into a CRZS showing a two-color

twofold rotor. (q.e.d.)

The proof offered by Verma & Krishna (1966, p. 159) is

unclear and hardly convincing. Surprisingly, they add the

sentence: ‘The converse would also be true’, with no further

explanation.

(b) We now assume that the CRZS possesses an anti-

twofold rotor and prove that this necessarily represents a

stacking having a 63 screw. We consider, with no loss of

generality, sequences starting with an A layer, satisfying an

anti-twofold axis in its CRZS, i.e. the sequence of signs in the

second half of the unit cell is the negative of that in the first

half; we represent the jth layer in each half of the unit cell as

Xj, Yj such that Xj;Yj 2 fA;B;Cg. Then, the unit cell can be

represented as��As1 X
s2
2 . . . X

sk

k . . . Xsn
n

��Yt1
1 Y

t2
2 . . . Y

tk
k . . . Ytn

n

��; ð11Þ

where
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sj; tj 2 fþ;�g and sj ¼ �tj; 1 � j � n; n ¼ P=2:

We call Sk ¼
Pk�1

j¼1 ðsjÞ1, i.e. Sk is the difference between the

number of plus signs and minus signs up to (but not including)

layer number k and likewise define Tk ¼
Pk�1

j¼1 ðtjÞ1, from

which, obviously,

Sk ¼ �Tk; 8 k: ð12Þ

In x2.1 we have proved (3), which can be translated immedi-

ately into

Sk � 0 ðmod 3Þ )

Sk � 1 ðmod 3Þ )

Sk � 2 ðmod 3Þ )

9=
; layer Xk is a

A layer

B layer

C layer

8<
:

9=
; ð13Þ

and, in particular,

Snþ1 � 0 ðmod 3Þ )

Snþ1 � 1 ðmod 3Þ )

Snþ1 � 2 ðmod 3Þ )

9=
; layer Y1 is a

A layer

B layer

C layer

8<
:

9=
;: ð14Þ

Suppose, for instance, that Snþ1 � 0 ðmod 3Þ, hence layer Y1 is

an A layer. Clearly, any layer Yk for which Tk � 0 ðmod 3Þ will

also be an A layer and, by virtue of (12), the corresponding Xk

layer in the first half of the unit cell will also be an A layer.

Any Xk layer for which Sk � 1 ðmod 3Þ will be a B layer, as

required by (13), and the corresponding Yk, displaced by 1/2

along the c axis, will be a C layer due to (12); reciprocally, any

Xk layer for which Sk � 2 ðmod 3Þ will be a C layer, and the

corresponding Yk, displaced by 1/2 along the c axis, will be a B

layer. But this is [see part (a) of this proof] the hallmark of a 63

screw axis through the nodes of an A layer. The argument can

be repeated assuming Snþ1 � 1ð2Þ ðmod 3Þ, and we will find 63

screws through the nodes of a B(C) layer. Obviously, the

nature of the 63 screw is a matter of definition and depends on

the choice of origin.

This completes the proof.

3. Concluding remarks

The rules enunciated by Zhdanov relating the symmetry of a

close-packed stacking of equal spheres and the symmetry

properties of its Zhdanov symbol turn out to be, indeed,

necessary and sufficient conditions. The best way to describe

the symmetry properties of the Zhdanov symbol is to interpret

these properties in terms of the two-color point group of

symmetry of the cyclical representation of the Zhdanov

symbol. The set of symmetry elements mapped out by this

bijection is (Iglesias, 2006a) that described in Table 1.
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